翻訳と辞書
Words near each other
・ Rice Krispies
・ Rice Krispies Treats
・ Rice Lake
・ Rice Lake (Barron County, Wisconsin)
・ Rice Lake (CDP), Minnesota
・ Rice Lake (Cook County, Minnesota)
・ Rice Lake (ghost town), Minnesota
・ Rice Lake (Hubbard County, Minnesota)
・ Rice Lake (Mille Lacs County, Minnesota)
・ Rice Lake (Ontario)
・ Rice Lake (Pope County, Minnesota)
・ Rice Lake (Rice County, Minnesota)
・ Rice Lake (town), Wisconsin
・ Ricci Institutes
・ Ricci Luyties
Ricci scalars (Newman–Penrose formalism)
・ Ricci soliton
・ Ricci v. DeStefano
・ Ricci-flat manifold
・ Riccia
・ Riccia atlantica
・ Riccia fluitans
・ Riccia, Molise
・ Ricciaceae
・ Ricciarda Cybo-Malaspina
・ Ricciarda, Marchioness of Saluzzo
・ Ricciardo Amadino
・ Ricciardo e Zoraide
・ Ricciarelli
・ Ricciarelli (disambiguation)


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Ricci scalars (Newman–Penrose formalism) : ウィキペディア英語版
Ricci scalars (Newman–Penrose formalism)
In the Newman–Penrose (NP) formalism of general relativity, independent components of the Ricci tensors of a four-dimensional spacetime are encoded into seven (or ten) Ricci scalars which consist of three real scalars \, \Phi_\}, three (or six) complex scalars \_\,,\Phi_=\overline_\,,\Phi_=\overline_\} and the NP curvature scalar \Lambda. Physically, Ricci-NP scalars are related with the energy–momentum distribution of the spacetime due to Einstein's field equation.
==Definitions==
Given a complex null tetrad \ and with the convention \, the Ricci-NP scalars are defined by〔Jeremy Bransom Griffiths, Jiri Podolsky. ''Exact Space-Times in Einstein's General Relativity''. Cambridge: Cambridge University Press, 2009. Chapter 2.〕〔Valeri P Frolov, Igor D Novikov. ''Black Hole Physics: Basic Concepts and New Developments''. Berlin: Springer, 1998. Appendix E.〕〔Abhay Ashtekar, Stephen Fairhurst, Badri Krishnan. ''Isolated horizons: Hamiltonian evolution and the first law''. Physical Review D, 2000, 62(10): 104025. Appendix B. (gr-qc/0005083 )〕 (where overline means complex conjugate)
\Phi_:=\fracR_l^a l^b\,, \quad \Phi_:=\fracR_(\,l^a n^b+m^a\bar^b)\,, \quad\Phi_:=\fracR_n^a n^b\,, \quad\Lambda:=\frac\,;
\Phi_:=\fracR_l^a m^b\,, \quad\; \Phi_:=\fracR_l^a \bar^b=\overline_\,,
\Phi_:=\fracR_m^a m^b\,, \quad \Phi_:=\fracR_\bar^a \bar^b=\overline_\,,
\Phi_:=\fracR_\bar^a n^b\,, \quad\; \Phi_:=\fracR_m^a n^b=\overline_\,.
Remark I: In these definitions, R_ could be replaced by its trace-free part Q_=R_-\fracg_R〔 or by the Einstein tensor G_=R_-\fracg_R because of the normalization (i.e. inner product) relations that
:l_a l^a = n_a n^a = m_a m^a = \bar_a \bar^a=0\,,
:l_a m^a = l_a \bar^a = n_a m^a = n_a \bar^a=0\,.
Remark II: Specifically for electrovacuum, we have \Lambda=0, thus
24\Lambda\,=0=\,R_g^\,=\,R_\Big(-2l^a n^b+2m^a\bar^b \Big)\; \Rightarrow \; R_l^a n^b\,=\,R_m^a\bar^b\,,
and therefore \Phi_ is reduced to
\Phi_:=\fracR_(\,l^a n^b+m^a\bar^b)=\fracR_l^a n^b=\fracR_m^a\bar^a\,.
Remark III: If one adopts the convention \, the definitions of \Phi_ should take the opposite values;〔Ezra T Newman, Roger Penrose. ''An Approach to Gravitational Radiation by a Method of Spin Coefficients''. Journal of Mathematical Physics, 1962, 3(3): 566-768.〕〔Ezra T Newman, Roger Penrose. ''Errata: An Approach to Gravitational Radiation by a Method of Spin Coefficients''. Journal of Mathematical Physics, 1963, 4(7): 998.〕〔Subrahmanyan Chandrasekhar. ''The Mathematical Theory of Black Holes''. Chicago: University of Chikago Press, 1983.〕〔Peter O'Donnell. ''Introduction to 2-Spinors in General Relativity''. Singapore: World Scientific, 2003.〕 that is to say, \Phi_\mapsto-\Phi_ after the signature transition.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Ricci scalars (Newman–Penrose formalism)」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.